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Abstract 

This study uses aggregated data on concentration, delays, and airfares from the US airports to shed light 

on two issues. First, we examine the concentration-delays relationship to contribute to the airport-

congestion self-internalization debate. Our study is the first investigation of this issue that uses data on 

sources of delays. Second, we evaluate whether increases in flight delays result in lower airfares when 

traveling from an airport. Our empirical results are mixed: while total delays are positively correlated with 

airport-level concentration (contradicting the self-internalization hypothesis), the variance of delays at 

larger airports does fall as concentration increases. We also find that an increase in airport concentration 

consistently decreases the share of delays that can be deemed endogenous to the airline. The negative 

relationship between delays and prices is confirmed, and estimates of this effect are similar to those found 

in the relevant literature. Of the various sources of delay, weather and late-aircraft delays have the 

strongest negative impact on prices. 
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1. Introduction 

This paper uses airport-level data for primary commercial-passenger airports in the United States (US) to 

address two important questions. First, we examine the relationship between airport-level airline 

concentration and delays. This allows us to weigh in on the important and hereto unresolved debate on 

self-internalization of airport congestion. This debate goes back to Brueckner’s (2002) suggestion that 

airlines with a dominant position at an airport will have an incentive to internalize congestion they impose 

on their own flights. Second, we quantify the relationship between delays and average airfares for trips 

originating at an airport, paying particular attention to sources of delays. Specifically, some delays (such 

as weather delays and tardiness caused by the National Airspace System) can be considered external to 

the carrier; whereas other delays are under the airline’s control. Previous work (Bilotkach and Pai, 2012) 

suggested a stronger association between external delays and airfares, examining a sample of one-stop 

itineraries from the US airline market. This study provides a broader examination of this issue. 

Our analysis combines data on airport concentration and average airport-level airfares with measures of 

air traffic delays across the US airline industry. We established a 17-year panel (1993-2009), which allows 

us to examine the issues at hand over a lengthy time period, and to take advantage of the panel data 

analysis techniques that control for airport-specific heterogeneity. Our estimation results lend limited 

support to the airport-congestion self-internalization hypothesis. We strongly confirm the robustness of 

Brueckner’s (2002) empirical evidence to other measures of flight delays using 1999 data (as in 

Brueckner’s seminal paper). Yet, cross-sectional analysis for other years is only weakly consistent with the 

implied negative relationship between airport concentration and delays. Our panel data analysis results 

are mixed. We do find that an increase in airport concentration consistently decreases the share of delays 

that are endogenous to the airline. The negative relationship between delays and prices is confirmed. Of 

the various sources of delay, weather and late aircraft delays have the strongest negative impact on prices. 

The issue of self-internalization of airport congestion is both theoretically ambiguous and empirically 

unresolved. However, available evidence on the balance leans towards supporting the self-internalization 

hypothesis. At the heart of the debate is Brueckner’s (2002) theoretical argument that dominant airlines 

will have incentives to self-internalize airport congestion. The basic idea of self-internalization is that, 

unlike a car on a freeway, an airline is considered to be non-atomistic since it generally operates several 

flights at a given airport. Recognizing that scheduling another peak-hour flight will slow down its own 

flights as well as those of other carriers, an airline will take into account self-imposed congestion in 

scheduling decisions. Daniel (1995) and Daniel and Harback (2008) provided an alternative theory, based 
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on a stochastic bottleneck model of a Stackelberg leader with a competitive fringe. They suggested that a 

dominant carrier’s incentive to self-internalize congestion is eliminated by the competitive pressure that 

fringe carriers exert. Since fringe carriers replace the flights cut by the leader with their services, any 

leader’s attempts to internalize this self-imposed congestion will prove futile. The leading carrier will 

therefore ignore this self-imposed congestion. In an attempt to reach some agreement on this 

internalization debate, Brueckner and Van Dender (2008) demonstrated how certain competitive settings 

will bring about self-internalization, while others will not.1 More recently, Lindsey et al. (2018) explore 

from the theory standpoint how self-internalization of airport congestion may affect the nature of 

equilibrium in a dynamic model of congestion with non-atomistic users. 

Empirical studies on self-internalization issue are as follows. Mayer and Sinai (2003a) showed that delays 

decrease with airport concentration, while delays at hub airports are longer than at non-hubs. Rupp 

(2009) found that airlines do not internalize costs of air traffic congestion, reversing Mayer and Sinai’s 

conclusions. The difference between the two studies is in the use of delay measures relative to the 

minimum (Mayer and Sinai) and the scheduled (Rupp) travel time. 

Further evidence that supports congestion internalization is provided by Ater (2012), using the data on 

scheduling at hub airports. Santos and Robin (2010) also offered some evidence in favor of self-

internalization, examining delays at European airports in 2000-2004. In an effort to explain why carriers 

overschedule flights at peak times, Molnar (2013) found that, depending on the time-of-day and 

connections, the congestion benefits of deterring flights by competitors offsets the operational costs of 

congestion at hub airports.  

Fageda and Flores-Fillol (2016) suggest that the extent of congestion self-internalization depends on the 

dominant carrier’s network structure. Specifically, airlines operating fully connected networks will be 

more inclined to internalize congestion than hub-and-spoke carriers. Bendinelli et al. (2016) evaluate the 

effect of low cost airline entry in Brazil on delays, finding evidence for self-internalization of airport 

congestion on that market. Guo et al. (2018) suggest that self-internalization of congestion can be tested 

                                                           
1 According to the Stackelberg model, the dominant carrier (leader) schedules flights to preempt scheduling 
decisions by fringe carriers (followers). However, inconsistent with the self-internalization hypothesis, the 
motivation to deter followers pushes the dominant carrier to also overschedule flights. Note that this explanation 
only holds if the leader’s scheduling decisions meet an irreversible commitment condition, which is not a reliable 
ssumption to make for the airline industry (scheduling decisions are usually made semi-annually). 
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through reduced-form price regressions. Interestingly, their results contradict the vast literature on the 

link between airport dominance and airfares. 

The following points differentiate our work from the previous empirical studies on the congestion self-

internalization debate. First, we use airport-level data over a relatively long time period, while other 

studies tended to focus on flight-level data over a short time period. Santos and Robin also used airport-

level data for European airports over five-year period. However, they did not use an airport-level fixed 

effects model as we do. Second, we use a wide array of measures of air travel delay, including the 

information on the sources of delay. Such information allows us to distinguish (to a degree) between 

delays that are endogenous and exogenous to the carrier. Previous studies tended to focus on more 

generic measures of arrival and departure delays. 

Other studies on determinants of air traffic delays that do not specifically focus on the self-internalization 

hypothesis are the following. Mazzeo (2003) showed that flight delays are shorter and experience fewer 

on (at) competitive routes (airports). Lee and Rupp (2007) examined the relationship between the effort 

level of pilots and airport delays, finding that pilots’ wage reduction affect delays. Prince and Simon (2010) 

demonstrated that delays increase with the level of multimarket contact between carriers. Ater and Orlov 

(2015) demonstrated a positive relationship between air traffic delays and the spread of the internet, 

attributing their finding to the way the internet has changed competition between the airlines. 

Studies on the effects of delays are scarce. Focusing on New York’s LaGuardia airport, Forbes (2008a) 

found that the impact of delays on airfares is stronger on competitive routes. Her study suggested that 

average airfares drop by $1.42 in response to an extra minute of delay. Bilotkach and Pai (2012) used a 

sample of one-stop itineraries to quantify the relationship between delays at connecting hub airports and 

airfares. They found that one additional minute of weather delay decreases average fares by between 

$4.46 and $6.55, while an extra minute of carrier delay results in a $2.70 to $5.13 price decrease. 

Interestingly, Bilotkach and Pai’s estimate of the price effect of extra minute of total delay is similar to 

Forbes’. 

The rest of the paper is organized in a straightforward manner. Section 2 discusses the data we use. 

Section 3 outlines our estimation methodology. Section 4 presents and discusses the estimation results. 

Section 5 concludes the paper. 
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2. Data 

Our dataset is a 17-year (1993-2009) panel of airport-level observations on air traffic delays, weather 

characteristics, average airfares, and other airport-level control variables, covering the entire United 

States. The US Federal Aviation Administration (FAA) classifies airports as primary and non-primary, using 

10,000 passenger boardings per year as the cut-off. For our analysis, we will focus on primary airports. 

The primary airports are further subdivided by the FAA into non-hub airports, small hubs, medium hubs, 

and large hubs based on the percentage of total passenger boardings handled by the airport. Specifically, 

non-hub airports are primary airports that handle less than 0.05% of total passenger traffic on the US 

market; 2 small hubs handle 0.05 to 0.25% of all passengers. In order to be classified as a medium hub, the 

airport needs to handle more than 0.25% (but less than 1%) of all passengers. Finally, airports that handle 

over 1% of all passenger boardings in the US market are classified as large hubs. Note that some airports 

may change their classification over the years.  

Overall, there are 442 airports in our dataset, which are classified as primary in at least one year. 

Availability of delays data, and the airport fixed effects methodology3 reduced the number of airports 

included into our analysis to 232. 

2.1. Delay Data 

We obtained delay measures at the flight-number level from the Department of Transportation’s (DOT) 

Bureau of Transportation Statistics (BTS) division. BTS aggregates information on airline operations, flight 

delays, and airfares in the US airline industry. Amongst several databanks provided by BTS, the On-Time 

Performance tables offer data on departure and arrival delays, cancelled and diverted flights, and other 

flight-level measures for non-stop US flights, beginning in 1987. Delays are measured as the difference 

between scheduled and actual departure (arrival) times, in minutes. Beginning in June 2003, flight delay 

minutes by cause of delay are also provided. The delay causes, which are determined by the carriers’ 

automated- and manual-reporting systems, are broadly classified as carrier, weather, National Air System 

(NAS), security and late aircraft.4 

                                                           
2 To put this into perspective, 0.05% of total US domestic passenger traffic corresponds to about 300,000 
passengers per annum. 
3 Any airport, data for which is only available for one year, is excluded from the sample. 
4 Under the DOT’s 14 CFR Part 234 regulations, U.S. airlines accounting for at least 1% of domestic scheduled-
service passenger revenues are required to report monthly on-time performance statistics for their scheduled-
service flights at large hubs (account for 1% or more of annual domestic passenger enplanements). However, all of 
the reporting carriers (14) voluntarily file records for all U.S. airports they serve on scheduled domestic operations. 
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Using the On-Time Performance data, we have calculated the following delay measures, by origin airport, 

for each year: 

Departure delay: annual count, average, sum, and variance of departure delays of all flights at a given 

airport. The average (mean), sum, and variance of delays are measured in minutes delayed. All measures 

include early (negative) and on-time departures (zero minutes of delays). Departure delay is defined as 

the difference between actual and scheduled time at which an aircraft leaves the gate. 

Route delay: annual count, average, sum, and variance of delay en route (from the time an aircraft leaves 

the departure gate up to the moment it reaches the arrival gate). This delay is defined as the difference 

between the actual and scheduled elapsed flight travel time. 

Total delay: annual count, average, sum, and variance of arrival delay for flights originating at a given 

airport. 

To put these measures into perspective, consider the following example. Suppose a flight scheduled to 

depart at 9:00 AM leaves the gate at 9:30 AM. Assume further that the scheduled flight time for this 

service is 2 hours, and it reaches its final destination 1 hour and 50 minutes after leaving the departure 

gate, still twenty minutes behind schedule. For this flight, we register a departure delay of 30 minutes, a 

route delay of -10 minutes, and a total delay of 20 minutes. The same flight leaving 5 minutes ahead of 

schedule and arriving 15 minutes behind schedule will register -5 minutes departure delay, 20 minutes of 

route delay, and 15 minutes total delay. 

FAA considers a flight to be delayed, if the difference between actual and scheduled departure (arrival) 

time exceeds 15 minutes. According to this definition of delay, and consistent with previous literature 

(Brueckner 2002; Forbes, 2008a), we calculated the measures for departure, route, and total delays for 

flights that register over 15 minutes of delay according to each of the three measures we employ. 

Then, the count of delay is simply the number of departing flights registering departure, total, and route 

delay in a year, according to FAA threshold. In the above example, our flight departing 30 minutes and 

arriving 20 minutes behind schedule would add to count of departure and total delays, but not route 

delays. The mean delay is computed only for flights that are delayed by at least 15 minutes. The sum of 

minute delayed is also computed for the flights that are considered delayed according to the FAA 

                                                           
The reporting carriers use automated systems (ACARS, DGS, and/or AFIS) or a combination of automated and 
manual systems to collect flight-operations data. 
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threshold. Once again, the flight in our example would add 30 minutes to departure delay, 20 minutes to 

total delay, and zero minutes to route delay (as the flight itself lasted ten minutes less than scheduled). 

From 2003, the database on air traffic delays started attributing delays into one of the five categories: 

carrier, weather, National Air System, security, and late aircraft. The airlines themselves decide on how to 

classify the delays according to these categories. In this study, we take the airlines’ reporting at face value. 

Specifically, for the data starting in 2003, we calculated the following measures for all flights originating 

at a given airport: 

Sum of delay (in minutes) by cause:  annual total of carrier, weather, National Air System (NAS), security, 

and late aircraft delays for all flights at a given airport; 

Share of delays by cause: annual shares of carrier, weather, National Air System (NAS), security and late 

aircraft delays (from total delays) for all flights at a given airport. 

These calculations are performed for flights arriving at their destination behind schedule. Thus, if a flight 

was – for whatever reason – delayed at the departure gate, but made up the time en route to arrive at its 

destination on schedule, this flight was not included into our calculations for delays by cause.  

Basic descriptive statistics for all our delay measures are reported in Tables 1 and 2. The means and 

standard deviations are reported separately for all primary airports, as well as for the sub-samples of large 

hubs, and large and medium hub airports. The obvious reason for focusing on these sub-samples is that 

they include most, if not all, of the airports prone to congestions and air traffic delays. Frequently, delays 

at smaller airports are related to congestion at large/medium hubs. Table 1 reports the numbers for all 

the above-listed measures of arrival, route, and total delays. Descriptive statistics for delays by source are 

reported in Table 2.  

Looking at Table 1, we can note the following facts. First, the number (count) of flights experiencing 

departure delay is somewhat smaller than the number of flights experiencing total delay, suggesting that, 

on average, a flight leaving the departure gate on time may be held up either queuing on tarmac, in flight, 

or taxiing after landing. Further, an average delayed flight leaves the gate at a large hub airport 5 minutes 

earlier, and reaches it final destination 3.5 minutes earlier, as compared to the corresponding averages 

for the whole sample. Comparing variances of delays, we can see that departure and total delays are less 

dispersed at larger airports, while route delays exhibit higher variance at medium and large hubs, 

potentially reflecting more uncertain queuing times at those gateways. 
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Looking at the source of delays data, the descriptive statistics in Table 2 show carrier, late-aircraft, and 

NAS delays as the three nearly-equal and most important sources of delay. Together, the three delay 

sources are responsible for over 90 percent of all delays. Not surprisingly, late aircraft and carrier delays 

are responsible for a larger share of delayed flights at large and medium hub airports.  

Looking at the source of delays, we can consider both carrier and late aircraft delays to be carrier-

controlled delays, while other delays are largely exogenous to the carrier. We of course understand that 

this delineation is far from perfect. A late aircraft could be delayed by weather conditions or NAS issues 

on a previous flight. Similarly, bad weather could prevent the assigned crew from showing up at the hub 

on time for their next scheduled flight – an event that would be recorded as carrier delay in the data. 

However, we can see that nearly two thirds of delays are attributed to carrier operations or late aircraft 

arrival. Even with the above caveat, we can suggest that the carrier’s operations make a non-trivial 

contribution to on-time performance. 

2.2. Weather Data 

We use the National Oceanic and Atmospheric Administration’s (NOAA) Global Historical Climatology 

Network (GHCN) to calculate annual airport weather variables, from 1993 to 2009. Linking the GHCN’s 

daily weather station data to corresponding U.S. airports, we calculated the following weather variables 

(Table 3 reports the corresponding descriptive statistics). 

Average precipitation: Annual average levels of rain and melted snow (in tenths of mm) at GHCN stations 

located at/near airports in our dataset. 

Average snowfall:   Annual average snow depth (in mm) at GHCN stations located at/near airports in our 

dataset. 

2.3. Prices and airport characteristics 

Data for the analysis of price effects of delays also come from BTS. The average airport-level prices that 

we use are computed from a 10% sample of actual itineraries (DB1B).5 We adjust the BTS reported airfares 

for inflation with a Consumer Price Index (CPI) deflator, using 1993 as the base year.  

Airport-level variables are computed from the BTS T-100 Segment tables. These tables include monthly 

data on all commercial airline services departing from US airports, provided at the airline-origin-

                                                           
5 The Airline Origin and Destination Survey (known as the DB1B) is a 10% sample of passenger-airline tickets, which 
includes itinerary information on origin, destination and other flight details. 
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destination-aircraft type level.6 Data on the number of departures performed, available seats, passengers 

enplaned, and the weight of transported freight and mail are also included in the T-100 tables. After 

aggregating the data to the year level, and merging regional carriers with their corresponding major 

airlines,7 we compute the following airport-level measures using the T-100 data: 

Market shares of individual airlines: The share of flights performed by a carrier at a given airport, out of 

all the flights performed at that airport. Market shares have been computed for thirteen individual major 

carriers, some of which have not existed for the entire duration of our panel. The main purpose of this 

variable is to account for possible price changes due to growth of low cost carriers (most importantly, 

Southwest Airlines and JetBlue Airways). 

Airport Level Herfindhal-Hirschmann Index (HHI):  The sum of squared market shares, across all of the 

airlines at an airport. We computed this index based on the flight shares of the airlines in our dataset. This 

variable will play a key role in analysis of the self-internalization hypothesis. 

Total passenger volume: The total number of passengers enplaned at the airport. This variable is a control 

for scale effects. 

Mean distance: The passenger-weighted mean distance of a non-stop flight from the airport. 

The descriptive statistics for these variables are reported in Table 4. From that table we can see that larger 

airports feature both lower levels of concentration and lower average airfares as compared to an average 

primary airport. Bilotkach and Lakew (2014) provide further breakdown of the airport-level concentration 

measures across different types of primary airports, and clearly demonstrate that smaller airports exhibit 

higher concentration levels. Their study also demonstrates a clear relationship between airport 

concentration and average airfares, in line with what we see in Table 4. Lastly, we see that non-stop flights 

out of larger airports are, on average, longer-haul (note that we only include the data for US domestic 

flights into our analysis), and large hubs handle about six times the traffic volume of an average primary 

airport, confirming the well-known fact that traffic is very unequally distributed across the gateways. 

                                                           
6 For example, in a given month, American Airlines’ Boeing 767-200 services from Los Angeles International (LAX) 
to O’Hare International (ORD) are separately recorded from services on the same route performed by the carrier 
using a slightly different Boeing 767-300 aircraft. 
7 Some services, in particular on thinner routes, are delegated by the major carriers to regional airlines, typically 
using smaller jet and/or turboprop aircraft. The original T-100 table codes regional airlines differently from the 
majors. Details on the procedure used to merge regionals with the majors are available from the authors upon 
request. 
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3. Estimation methodology  

Our empirical investigation will consist of two parts. First, we offer an analysis of the determinants of 

delays, focusing on the congestion self-internalization hypothesis. Second, we examine the effects of 

delays on prices, extending the literature represented by Forbes (2008a) and Bilotkach and Pai (2013). 

Most of our work takes advantage of the panel nature of the dataset – we use an airport fixed effects 

estimation technique to account for airport-level heterogeneity. However, to motivate our analysis more 

clearly and provide a bridge to the existing literature, we also conduct a cross-sectional data analysis 

similar to that executed in Brueckner (2002). The cross-sectional analysis compares delay measures across 

airports for a given year. The panel data analysis evaluates how delays change over time as airport-level 

concentration changes, accounting for time-specific airport-invariant, airport-specific time-invariant 

effects, as well as changes in various airport-level control variables. 

The congestion self-internalization hypothesis, if true, will imply a negative relationship between airport 

concentration and delays. Looking at delays by source, we can separate those into two groups, depending 

on whether they are endogenous or exogenous to the airline. Specifically, carrier and late aircraft delays 

are, to a degree, endogenous to the carrier. Carrier delays are typically caused by staffing, fleet planning, 

maintenance and other issues. While these problems could be outside of an airline’s control to some 

extent, they are not as exogenous to the carrier as weather, NAS, or security delays. Late aircraft delays 

are ‘semi-endogenous’, depending on their underlying cause. In our analysis we will therefore pay specific 

attention to this distinction by running specifications that group Carrier and Late Aircraft delays, as well 

as Weather, NAS and Security delays, together.  

The cross-sectional analysis of the determinants of delays follows Brueckner (2002) by selecting the same 

25 delay-prone airports and the same explanatory variables included in the exploratory regressions of the 

study. Our analysis differs from Brueckner’s in two ways. First, we estimate our specification for all the 

aggregated delay measures at our disposal. Second, in addition to estimating the specification for 1999 

(the year reported in Brueckner, 2002), we provide this analysis for 1994, 2004, and 2009 – five years 

before 1999, as well as five and ten years after that year. In each case, we will estimate the following 

specification: 

𝐷𝑒𝑙𝑎𝑦𝑖 = 𝛼0 + 𝛼1𝐻𝐻𝐼𝑖 + 𝛼2𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠𝑖 + 𝛼3𝐻𝑢𝑏𝑖 + 𝛼4𝑆𝑙𝑜𝑡𝑖 + 𝛼5𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖 + 𝜀𝑖 , (1) 

where 𝐻𝐻𝐼𝑖 is the airport-level Herfindhal-Hirschman index, based on the number of departures; 

𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠𝑖 denotes the number of aircraft movements (departures) at the airport; 𝐻𝑢𝑏𝑖 is the indicator 
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variable for the status of the airport as a hub for a major carrier; 𝑆𝑙𝑜𝑡𝑖 is the indicator variable for the slot-

controlled airport;8 and 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖 is the annual precipitation at the airport. 

The panel data analysis of determinants of air traffic delays consists of estimating simple airport-level 

fixed effects regressions of the general form: 

log(𝐷𝑒𝑙𝑎𝑦𝑖𝑡) = 𝛽𝑖 + 𝛾 log(𝐻𝐻𝐼𝑖𝑡) + 𝛿𝐼𝑡 + 𝜃𝑋𝑖𝑡 + 𝜀𝑖𝑡.      (2) 

Here, 𝐷𝑒𝑙𝑎𝑦𝑖𝑡 is our measure of air traffic delays at airport i in year t; 𝛽𝑖 represent the corresponding 

airport fixed effects; 𝐼𝑡 is the vector of year dummies, with 𝛿 denoting the vector of the respective 

coefficients. The vector of control variables 𝑋𝑖𝑡 includes the following: the natural logarithm of aircraft 

movements and mean distance of non-stop flight from an airport, as well as the two weather variables 

and airline market shares. Regressions for the aggregated measures of air traffic delays use the entire 

length of the panel, whereas specifications using delays by source only use the data for 2003-2009. Note 

also that the particular functional specification we are using allows us to interpret the key coefficient 𝛾 as 

the respective elasticity. 

Further, as we mentioned above, the analysis will be performed both for the entire population of primary 

airports, and for two sub-samples from this population. Specifically, we will separately consider a subset 

of large hub airports, as well as another sub-sample, which includes large and medium hubs (as defined 

by the FAA). We focus separately on these subsets of larger airports, as they are more prone to congestion 

and delays. 

The analysis of price effects of delays will be performed using the airport-level fixed effects specification 

of the form: 

log(𝑃𝑟𝑖𝑐𝑒𝑖𝑡) = 𝛽𝑖 + 𝜇 log(𝐷𝑒𝑙𝑎𝑦𝑖𝑡) + 𝛿𝐼𝑡 + 𝜌𝑊𝑖𝑡 + 𝜀𝑖𝑡 .      (3) 

As before, 𝛽𝑖 denote airport-level fixed effects; 𝐼𝑡 are year dummies; and 𝑊𝑖𝑡 represents the vector of 

control variables, consisting this time of the logarithm of airport-level HHI, total number of aircraft 

movements, mean distance of a non-stop flight, and passenger-based airport-level shares of individual 

airlines. As noted by Bilotkach and Pai (2013), air traffic delays in price regressions of this type might suffer 

from the endogeneity problem. Hence, we employ the classical instrumental variable approach to tackle 

this issue, using our weather variables as instruments for delay measures. Further, we use lagged airport-

level HHI and number of aircraft movements as instruments for the corresponding potentially endogenous 

                                                           
8 These are New York JFK, New York LaGuardia, Washington Regan National, and Chicago O’Hare airports. 
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variables (following Bilotkach and Lakew, 2014). For the sake of consistency, we will estimate this 

specification both for the entire population of primary airports, and for the two subsets of larger airports 

from this population, as identified above. 

4. Results 

4.1. General 

The following tables present our estimation results. Results of the cross-sectional analysis replicating 

Brueckner’s (2002) study for 1999 and 3 additional years (1994, 2004, and 2009) are presented in Table 

5. The fixed effects results on the impact of airport concentration on delays and delays by source are 

provided in Tables 6 and 7, respectively. Results for the second part of our study, examining the price-

effects of delays and delays by source, are reported in Tables 8 and 9, respectively. 

Altogether, we are working with 12 aggregate measures of flight delays (9 for cross-sectional regressions, 

where we do not include estimates for the effect of airport concentration on the variance of delays), and 

14 measures of delays by source. This amounts to 36 cross-sectional specifications and (given that the 

analysis is executed for both the entire population of primary airports and the two subsets as identified 

earlier) 78 specifications for both concentration-delays and delays-price relationships. Presenting full 

results for 192 specifications is not practical, so our tables only include the key coefficient estimates. Thus, 

Table 5 contains estimates of 𝛼1 from various versions of specification (1), along with standard errors that 

are robust to both autocorrelation within and heteroscedasticity across the cross-sections (clustered). 

Tables 6 and 7 include various airport-level fixed effects estimates of 𝛾 from specification (2), with 

clustered standard errors. Tables 8 and 9 report airport-level fixed effects two-stage least squares 

estimates of 𝜇 from specification (3), also with clustered standard errors.  

4.2. Effects of Airport Concentration on Delays: Cross-sectional results for selected years (1994, 1999, 

2004, and 2009) 

Table 5 reports the results of a cross-sectional analysis that shows the impact of airport-level 

concentration (HHI) on various measures of delay. The full specification of the regressions replicates 

regression (1) in Table 2 of Brueckner’s (2002) study. Brueckner used 1999 data for 25 congestion-prone 

US airports. His measure of delay is the total number of delayed flights (or count of delays). We have 

included 3 more years (1994, 2004, and 2009) of the same analysis in the table for comparison purposes. 

We can see that the cross-sectional results for 1999 are very well in accordance with the self-

internalization hypothesis. HHI coefficient is negative in most specifications and nearly consistently 
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significant across various measures of delay. We use boldface font to denote the specification that is most 

closely equivalent to Brueckner's (2002) regression we are replicating. The corresponding coefficient from 

that paper (-17,093) differs from the one we find (-28,046) for that year in a specification that uses an 

equivalent measure of delay (count of delays over 15 minutes). We attribute this discrepancy to potential 

measurement issues in the control variables (e.g., how regional or foreign carriers have been incorporated 

into HHI measurement, or whether international aircraft movements are included into the total count),9 

coupled with the small sample size. 

However, the negative airport HHI-delays relationship does not hold for other years shown in Table 5. In 

fact, results for 2004 and 2009 suggest that concentrated airports are associated with higher count of 

delayed flights. Results for 2009 also exhibit a positive relationship between airport concentration and 

the sum of total delays. We do see sporadic coefficient estimates in cross-sectional regressions for years 

other than 1999, which are consistent with the self-internalization hypothesis. In particular, airport-level 

concentration has a negative effect on mean departure delays in 1994, as well as on mean departure and 

total delays over 15 minutes in 2004. Overall, however, the picture does not appear consistent with the 

hypothesized negative HHI-delays relationships, once we move away from the 1999 data. Rather than 

overturning Brueckner’s results, to the contrary, we show that his results are robust to various measures 

of flight delay for the 1999 data. However, our cross-sectional results also demonstrate the need to 

account for time-specific and airport-specific heterogeneity, taking advantage of the panel nature of the 

dataset. 

We should further stress that, looking at our data, we see substantial variability in most of the delay 

measures we employ across the years. As an example, consider the count of flights delayed by at least 15 

minutes. The un-weighted average coefficient of variation across all the primary airports for which this 

measure can be computed is 0.49. This means that over the years the standard deviation of the count of 

delayed flights at an average airport is equal to about half of the corresponding mean, implying a rather 

dispersed distribution. 

4.3. Effects of Airport Concentration on Delays: Airport Fixed Effects 

The results for the airport fixed effects analysis of the airport-concentration-delays relationship are 

presented in Tables 6 and 7. We can immediately note from those tables that few regressions for the 

entire population of primary airports yield statistically significant coefficient estimates. Further, results 

                                                           
9 Our measures are based on US domestic market traffic. 
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for the subsets of large and medium hub airports demonstrate a positive relationship between airport 

concentration and delays for most specifications using count of delayed flights, as well as for two 

specifications for sum of delays. That is, contrary to the congestion self-internalization hypothesis, 

increased airport concentration leads to more, not fewer flights being delayed. At the same time, there is 

some evidence suggesting that increased airport concentration decreases the severity of air traffic delays 

in larger airports. Specifically, higher airport HHI is found to decrease mean delays (even though the 

corresponding coefficients fail to reach statistical significance at conventional levels). Also, our results 

quite robustly demonstrate that increased airport concentration is associated with lower variance of 

delays at larger airports, with the magnitude of this effect varying slightly across specifications. A 10-

percent increase in airport-level HHI here decreases variance of delays by 0.9 to 1.5 percent, looking only 

at statistically significant coefficient estimates. 

Results for the effect of airport concentration on delays by source, reported in Table 7, show the following. 

First, changes in airport concentration do not have a statistically significant effect on the sum of minutes 

delayed, with some outcomes being rather counter-intuitive. For example, we have little reason to expect 

airport-level concentration to affect weather delays. However, the corresponding coefficient on 

concentration is positive and significant in two specifications. Specifications using the share of delays by 

source, however, yield one very interesting result, which we can consider to present evidence in favor of 

the self-internalization hypothesis. Specifically, increased airport concentration clearly decreases the 

share of carrier delays and the sum of shares of carrier and late aircraft delays. Earlier, we mentioned that 

these delay sources are most likely to be endogenous to the carrier. The magnitude of the effect, however, 

is not impressive: a 10-percent increase in airport-level HHI decreases the share of carrier delays by 

around 0.2-0.45 percent, depending on specification and subset of airports. 

Overall, results presented in Tables 6 and 7 are mixed, with most relevant coefficients not statistically 

significant, and some running directly opposite in the direction predicted by the self-internalization 

hypothesis. While more flights are delayed with increased airport-level concentration, the delays do 

become less severe, as evidenced by lower variance of delays at larger airports. Further, the shares of 

delays that are endogenous to the airline are also affected by increased airport concentration in the 

direction predicted by the self-internalization hypothesis. Numerically, however, the magnitude of any 

effect of airport concentration on delays is rather small. Thus, even where we can talk about statistical 

significance of the concentration-delays relationship, there is little to write home about as far as economic 

significance of this effect is concerned. 
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One could correctly note that there could be different ways of conducting robustness checks of our 

results. We have done a couple of those, and results are available from the authors upon request. 

Specifically, one can rightly question whether using average weather variables is the best way of 

incorporating effects of adverse weather conditions on flight delays. So we have conducted our analysis 

also using standard deviations of precipitation and snowfall instead of averages10. This modification did 

not bring any qualitative changes to our results; and changes in the coefficient magnitudes have also been 

small to moderate at best. Next, we evaluated whether the events of September 11, 2001 might have had 

any structural effect on the relationship between airport concentration and delays. Notably, our data are 

reasonably symmetric around the year 2001. We have done this by adding – in the spirit of difference-in-

differences estimation strategy – the log(HHI)*(post-2001) variable to our specifications. Overall, we did 

not find the evidence for a structural break in the relationship, quite in line with our expectations. 

Furthermore, when we looked at the aggregate data on air travel delays, as presented by the US 

Department of Transportation, we noticed at best transitory improvement in airline on-time performance 

post-9/11. For instance, the share of flight arriving on time went up from 76.6 percent in 2001 to over 81 

percent in both 2002 and 2003; however, it went back down to 76-78 percent in the following three years, 

and stayed in the same territory as pre-9/11 ever since, only crossing the 80 percent mark once (in 2012). 

4.4. Price effects of delays 

Tables 8 and 9 clearly demonstrate the negative relationship between air traffic delays and average 

airfares for itineraries originating at an airport, similar to what has been shown in the literature before 

(Forbes, 2008a; Bilotkach and Pai, 2013). Most relevant coefficient estimates in the tables are negative, 

and a good number of those reach statistical significance. Of the measures of delay reported in Table 8, 

the mean and variance of delays exhibit the least robust relationship with airfares. The count of flights 

delayed by at least 15 minutes exhibits the most robust effect on prices, especially for departure delays. 

Another interesting result from Table 8 is the negative relationship between prices and variance of delays 

in some of the specifications. 

Table 9 shows that, of various sources of delay, weather and late aircraft delays have the strongest impact 

on airfares. The relationship is strong in the subset of large hub airports, marginally significant for the 

entire population, and does not achieve statistical significance at conventional levels in the subset of large 

and medium hub airports. We should note that weather delays turned out as the more significant 

                                                           
10 We are grateful to an anonymous referee for suggesting this robustness check. 
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determinant of prices compared to carrier delays in Bilotkach and Pai (2013). In contrast to that study, 

carrier delays do not appear as a significant determinant of prices (Bilotkach and Pai did not consider the 

impact of late aircraft delays in their work). At the same time, Bilotkach and Pai's paper focused on the 

issue of hub reliability, and their sample included one-stop itineraries going through hub airports. Finally, 

looking at specifications that add up endogenous (carrier and late aircraft) and exogenous (weather, NAS 

and security) delays, we see that the former appear to have a stronger impact on prices in the subset of 

large hub airports, while the latter show up as a stronger determinant of airfares in the entire population 

of primary airports. Yet, statistical significance of the corresponding coefficient estimates is marginal in 

both cases. 

To compare the magnitude of the price effects of air travel delays with those from the literature, Table 

10 converts elasticities reported in Table 8 into dollar figures for the FAA's definition of delays (flights 

that are delayed by at least 15 minutes). All of the estimates show the impact of delays on average 

airfares, provided for the sample mean delay measures. We should note that, just like our original price 

variable, the estimates in Table 10 are in year 1993 dollars. The US Bureau of Transportation Statistics 

reports that real airfares in the US domestic market have dropped by about 15 percent between 1995 

and 2013, while consumer price index increased by over 60 percent over the same time period. 

More specifically, Table 10 evaluates price changes due to the following hypothetical events. First, we 

suppose that the number of flights delayed by over 15 minutes increases by one percent. The price effect 

of this change is calculated directly from the elasticity values reported in Table 8, and imply a $0.66-1.33 

decrease in average airfares. We proceeded by computing the effect of increasing the mean delay by one 

minute, for flights delayed by 15 minutes or more. Only one of the regression coefficients for this measure 

is statistically significant at conventional levels, implying that the extra minute of total delay would 

decrease the average airfare for flights originating at large hub airports by 58 cents in 1993 dollars.  

To evaluate the price effects of an increase in the sum of minutes delayed, we have computed the price 

effect of increasing the delay of every otherwise delayed flight by one minute. That is, we simply added 

the count of delayed flights to the total minutes delayed. The corresponding estimated price effect is in 

line with both common sense and the existing literature. Looking at the results for the population of all 

primary airports, a one-minute increase in delays is associated with a $1.97-2.25 drop in average fares. 

The price effect of increasing departure delays for every flight, otherwise delayed by at least 15 minutes, 

and originating at a large hub airport, is $1.39. These estimates are comparable to $1.60 drop in average 

fares from an extra minute of total delay, reported by both Forbes (2008) and Bilotkach and Pai (2013). 
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Variance of delays for flights delayed by at least 15 minutes does not have a statistically significant effect 

on air fares. Still, we report the price effects of increasing such variance by 1 percent, for completeness. 

Increasing variance of route delays by one percent for the entire population of airports is associated with 

a $1.72 decline in average fares. The corresponding number for the price effect of increasing the variance 

of departure and total delays for flights originating at the large hub airports is $1.21 to 3.03. 

From Table 9, we see very little differences in estimated price elasticities with respect to the sum of 

minutes delayed for all flights versus flights delayed by over 15 minutes. Then, a 10-percent increase in 

weather delays will decrease average prices by 0.9 percent ($2.75) in the population of primary airports, 

and by 2 percent ($5.37) in the subset of large hubs. The latter estimate is similar to the price effect of an 

extra minute of weather delay, reported by Bilotkach and Pai (2013) at their sample mean.11 The 

corresponding numbers for price effects of the 10-percent increase in the late aircraft delay are $4.60 and 

$5.10. At the same time, considering that the share of the late aircraft delay is higher than the same 

number for the weather delays, the marginal price effect of an extra minute of late aircraft delay will be 

smaller than for the weather delay. Our results thus confirm Bilotkach and Pai’s finding that delays 

exogenous to the carrier tend to have a stronger effect on airfares compared to equivalent delays that 

are under the airline’s control. 

4.5. Schedule manipulation 

In using the delay measures relative to the scheduled time rather than the minimum possible flight time, 

we are largely following the approach adopted by Rupp (2009). Mayer and Sinai (2003a) and Ater (2012) 

advocated using what they call “excess time” as the proper measure of delay. This measure is defined as 

the difference between the actual and the theoretical minimum flight times between two airports. Ater 

correctly noted that the measures of delay we are using could be subject to manipulation by the airlines. 

Yet, Mayer and Sinai (2003b) concluded – based on analysis of schedule data for millions of flights – that 

airlines appear to follow a very simple scheduling algorithm. The scheduled flight time tends to be set 

close to the minimum allowed under the Federal regulations. Deshpande and Arikan (2012) provided 

another examination of the determinants of scheduled flight time. They found that the scheduled block 

time positively depends on the number of flights scheduled close to the given flight’s departure time. 

                                                           
11 In Bilotkach and Pai’s sample, an extra minute of weather delay is equivalent to over a 10-percent increase in the 
mean of this delay metric. 
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Let us also evaluate what kind of bias this potential schedule manipulation might introduce. If the self-

internalization hypothesis is true, the dominant airlines at the airports should more correctly account for 

the expected congestion cost when making their scheduling decisions. This will imply longer scheduling 

time, consistently with Ater’s finding that more concentrated banks at hub airports tend to be longer, 

and in line with Deshpande and Arikan’s (2012) results. Thus, if nothing else changes (i.e., all planes land 

at the same time as before), schedule adjustments consistent with the self-internalization hypothesis 

should lead to an improved on-time performance (if delays are measured as the difference between the 

actual and the scheduled time). Thus, by using a delay measure that is linked to the scheduled time, we 

are likely biasing the results against us: if we find the evidence consistent with the self-internalization 

hypothesis, this could be due to either self-internalization or schedule manipulation. At the same time, if 

we find evidence that is not consistent with self-internalization hypothesis, it will be difficult to imagine 

a scenario where airlines’ schedule adjustment could have negated any potential effect of congestion 

self-internalization, yielding us to conclude that self-internalization is not present when in fact it does. 

To further address this issue of schedule manipulation, we have run an airport-level fixed effects 

regressions similar to specification (2) with average scheduled time as the dependent variable. The 

results, which are available from the authors upon request, demonstrate that airport concentration does 

not have any impact on the length of the time block for which flights departing from an airport are 

scheduled. Most of the within-airport variation in this measure is explained by the mean distance of non-

stop flights, year dummies, and some of the airline-specific effects. Interestingly, competition between 

the airlines on routes originating at an airport increases the scheduled flight time. We attribute this to 

airlines seeking minimum differentiation in their scheduled departure times, as documented in 

Borenstein and Netz (1999). For example, suppose an airline schedules its flight to depart at 8:00 AM. 

When a new entrant appears and schedules a flight on the same route at 7:55 AM, the incumbent may 

reschedule its flight to 7:55 AM as well (perhaps to appeal to business travelers seeking to depart as early 

as possible), without changing the scheduled arrival time. 

With respect to the analysis of the price effects of delays, looking at the measures of delay relative to the 

flight schedule is the most appropriate thing to do. As Rupp (2009) noted, “passengers may be apathetic 

towards excess travel time”, while being “keenly aware of arrival and departure delays”, which they will 

evaluate based on when, relative to the scheduled time, the flight operated.  
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5. Concluding Comments 

This paper examines two issues related to one highly visible and important externality – airport 

congestion. Air traffic delays regularly attract considerable attention from the media, passengers, and the 

government. For instance, the summer of 2007 saw the worst airline on-time performance on record in 

the US airline industry, prompting then President George W. Bush to urge action to reduce delays in the 

future. Following highly publicized long tarmac delays during the 2008-2009 winter travel season, a law 

passed in 2009 in the US, known as the Passenger Bill of Rights, provides for substantial financial penalties 

to the airlines for keeping passengers in an aircraft on the tarmac for more than three hours. In November 

of 2011, for example, American Eagle (a regional carrier owned by American Airlines) was fined $900,000 

for fifteen separate violations of this law. 

Policy debates on alleviating the airport-congestion problem focus both on technological solutions (e.g., 

the NEXTGEN air traffic control system currently being implemented by the FAA), and potential use of 

economic instruments, such as congestion pricing. The latter is however mostly confined to academic 

debates, as the current Federal institutional framework related to airport infrastructure financing makes 

implementation of congestion pricing at US airports next to impossible (see Bilotkach, 2018, for a relevant 

discussion). The key issue in the academic debate on proper economic instruments for dealing with airport 

congestion is the so-called congestion self-internalization hypothesis, a suggestion that dominant airlines 

at concentrated airports will have an incentive to self-internalize the congestion externality. This issue is 

theoretically ambiguous. The empirical evidence on this hypothesis has also been conflicting, while we 

must admit that the academic literature has accumulated more evidence in favor of the hypothesis rather 

than against it. 

What differentiates our study from previous work on the self-internalization issue is the use of various 

measures of air travel delays, including the information on sources of delays. We do this at the expense 

of aggregating the data to the airport-year level and setting up a 17-year panel for the entire population 

of primary airports in the US. Future work could analyze these measures of delay (especially considering 

delays by source) with more disaggregated data. 

Our study lends little robust support for the congestion self-internalization hypothesis. While we 

demonstrate that increased concentration at larger airports leads to more flights being delayed, our data 

analysis also shows that delays become somewhat less severe – variance of delays decrease with airport-

level concentration in the panel data setting. We also demonstrate that higher airport concentration 
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decreases the share of delays attributable to the carrier’s actions rather than external causes. At the same 

time, many relevant coefficients are not statistically significantly different from zero, and some run totally 

contrary to what self-internalization would predict. 

Airline on-time performance is also acknowledged to be an important measure of service quality (Mazzeo, 

2003). We contribute to the small body of work quantifying price effects of this delay measure. Many of 

our estimates are in line with those reported in previous studies. We also identify two sources of delays – 

late aircraft and weather – that have robust impacts on airfares. The former of the two is assumed to be 

controlled by the carrier, while the latter is not. Even though estimated price elasticities with respect to 

these delays are similar (at least in the subset of large hub airports), the marginal price effect of an extra 

minute of weather delay is higher than the same number for late aircraft delays. 

Overall, our study demonstrates that the airport-congestion self-internalization hypothesis does have 

some merit. Increased airport concentration makes delays at larger airports more frequent, but somewhat 

less severe, and decreases the share of delays attributable to the carriers’ operations. Yet, the economic 

significance of the estimated airport-concentration-delays effect is not impressive, and does not 

sufficiently support the need for airport-congestion prices that are inversely proportional to a carrier's 

share of operations at an airport. 
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Table 1 Descriptive Statistics for annual Delay Measures 

 All primary airports 
(4,089 and 4,037 obs.) 

Large hubs only  
(541 obs.) 

Large and medium hubs 
(1,214 obs.) 

Count of delays 

Departure Delays 4,034 (9,325) 21,461 (16,436) 12,177 (13,911) 

Route Delays 1,751 (3,954) 9,528 (6,485) 5,251 (5,853) 

Total delays 4,900 (11,074) 26,237 (18,762) 14,763 (16,356) 

Mean (minutes of delay) 

Departure Delays 58.24 (12.36) 53.28 (6.77) 53.27 (7.23) 

Route Delays 27.76 (3.72) 29.59 (3.16) 28.78 (2.79) 

Total delays 53.94 (10.88) 50.47 (6.34) 50.41 (6.52) 

Sum (minutes of delay) 

Departure Delays 218,598 (513,614) 1,150,828 (940,068) 651,814 (778,234) 

Route Delays 52,695 (125,390) 291,650 (217,418) 158,725 (189,761) 

Total delays 253,559 (590,122) 1,347,617 (1,055,674) 756,546 (889,930) 

Variance of delays 

Departure Delays 4,088 (5,280) 2,711 (1,555) 2,901 (1,846) 

Route Delays 296.59 (301.11) 379.55 (189.01) 338.53 (193.43) 

Total delays 3,511 (4,060) 2,449 (1,227) 2622.24 (1,435.21) 

 
Notes: this table includes mean values, with standard deviations in parentheses. Only data for primary airports 

(those handling over 10,000 passengers per year) are used in calculations. We use FAA airport classifications, as 

described in the paper. Only flights delayed by at least 15 minutes are included into calculations. 

 

Table 2 Descriptive Statistics for Delay Measures, by Source of Delays 

 All primary airports 
(1,979 obs.) 

Large hubs only 
(226 obs.) 

Large and medium hubs 
(505 obs.) 

Sum of delays 

Carrier 72,176 (196,230) 457,696 (401,168) 247,834 (330,135) 

Late aircraft 93,650 (250,083) 556,761 (531,465) 323,134 (416,561) 

Weather 15,231 (48,843) 93,598 (116,471) 50,110 (87,635) 

NAS 79,616 (181,811) 457,872 (330,797) 264,184 (287,286) 

Security 484.54 (1,507) 2,883 (3,527) 1,610 (2,664) 

Share of minutes of delay by source 

Carrier 0.275 (0.128) 0.292 (0.092) 0.260 (0.081) 

Late aircraft 0.338 (0.163) 0.348 (0.097) 0.380 (0.098) 

Weather 0.076 (0.073) 0.052 (0.031) 0.047 (0.026) 

NAS 0.307 (0.143) 0.306 (0.080) 0.310 (0.091) 

Security 0.004 (0.016) 0.002 (0.002) 0.002 (0.0002) 

 

Notes: this table includes mean values, with standard deviations in parentheses. Only data for primary airports 

(those handling over 10,000 passengers per year) are used in calculations. Only flights delayed by at least 15 

minutes are included into calculations. 
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Table 3 Descriptive Statistics for Weather Measures 

 All primary airports Large hubs only Large and medium hubs 

Average Annual Precipitation  
(inches) 

35.82 
(22.14) 

35.42 
( 16.81) 

35.65 
(17.69) 

Average Annual Snow Depth 
(inches) 

35.49 
(50.15) 

22.70 
(25.87) 

26.54 
(49.00) 

 

Notes: this table includes mean values, with standard deviations in parentheses. Only data for primary airports 

(those handling over 10,000 passengers per year) are used in calculations.  

 

Table 4 Descriptive Statistics for Airport-Level Traffic Measures 

 All primary airports Large hubs only Large and medium hubs 

Real airfare (1993 dollars) 306.66 (109.86) 268.45 (67.87) 247.86 (67.94) 

Airport-level HHI 0.5121 (0.3040) 0.3208 (0.1819) 0.2832 (0.1736) 

Total Movements 25,222 (53,841) 160,722 (85,982) 96,915 (82,924) 

Mean Distance (miles) 453.23 (398.18) 1,132.68 (495.81) 888.96 (457.58) 

Individual Airline Market Shares 

American Airlines 0.0316 (0.0583) 0.0366 (0.0188) 0.0440 (0.0299) 

Alaska Airlines 0.0262 (0.1250) 0.0116 (0.0168) 0.0136 (0.0249) 

JetBlue Airways 0.0024 (0.0139) 0.0058 (0.0104) 0.0054 (0.0112) 

Continental Airlines 0.0241 (0.0514) 0.0358 (0.0186) 0.0387 (0.0242) 

Delta Air Lines 0.0355 (0.0665) 0.0367 (0.0187) 0.0422 (0.0259) 

Frontier Airlines 0.0084 (0.0320) 0.0170 (0.0180) 0.0139 (0.0189) 

Air Tran Airways 0.0074 (0.0257) 0.0114 (0.0148) 0.0108 (0.0169) 

America West Airlines 0.0087 (0.0296) 0.0280 (0.0214) 0.0274 (0.0285) 

Northwest Airlines 0.0316 (0.0626) 0.0361 (0.0186) 0.0391 (0.0242)  

TWA 0.0121 (0.0394) 0.0254 (0.0275) 0.0255 (0.0309) 

United Airlines 0.0272 (0.0543) 0.0362 (0.0191) 0.0416 (0.0271) 

US Airways 0.0280 (0.0812) 0.0331 (0.0203) 0.0332 (0.0252) 

Southwest Airlines 0.0122 (0.0320) 0.0188 (0.0213) 0.0299 (0.0329) 

 

Notes: this table includes mean values, with standard deviations in parentheses. Only data for primary airports 

(those handling over 10,000 passengers per year) are used in calculations.  



24 
 

Table 5 Effect of Concentration on Delays: Cross-Sectional Results for Individual Years 

 1994 1999 2004 2009 

Count of delays 

Departure Delays -1,639 (3,968) -25,692** (7,609) 12,391 (14,629) 25,921** (6,415) 

Route Delays -1,581 (3,776) -9,235** (4,029) 12,410 (8,836) -113.16 (3,435) 

Total delays -746.68 (4,544) -28,046** (12,787) 25,506** (11,813) 22,198** (5,691) 

Mean (minutes of delay) 

Departure Delays -7.6575 (9.0213) -2.0098 (5.3923) -16.4084** (7.6286) -20.7497 (5.3811) 

Route Delays 0.5955 (4.0121) -0.0797 (4.4359) -0.3186 (5.2432) -0.8133 (3.9347) 

Total delays -6.2743 (9.0937) -8.4581 (6.1870) -19.6851** (8.2374) -13.3120** (5.0902) 

Sum (minutes of delay) 

Departure Delays -198,866 (293,894) -1,507,021** (398,201) 139,968 (798,114) 1,046,437** 
(375,722) 

Route Delays -66,702 (144,292) -300,986** (137,141) 306,767 (295,119) 464.46 (109,916) 

Total delays -212,935 (381,715) -1,664,393** (485,916) 540,097 (787,790) 969,451** (357,677)  

Notes: 
1. Each entry represents the coefficient on airport HHI variable from the regression with the respective measure 

of delay as independent variable. 
2. Variables used in all specifications are the same as in Brueckner (2002). Sample includes 25 airports, also as in 

Brueckner (2002). 
3. White robust standard errors are in parentheses. 
4. Conventional significance notation is used: * - 10%; ** - 5%. 
 

Table 6 Effect of Airport Concentration on Delays: Airport Fixed Effects Results 

 All primary airports Large hubs only Large and medium hubs 

Count of delays 

Departure Delays -0.0441 (0.0918) 0.2772** (0.1155) 0.2071** (0.0920) 

Route Delays -0.0474 (0.0833) 0.1896* (0.0999) 0.0605 (0.0730) 

Total delays -0.0560 (0.0896) 0.2505** (0.1060) 0.1631** (0.0829) 

Mean (minutes of delay) 

Departure Delays -0.0153 (0.0237) -0.0817 (0.0904) -0.0984 (0.0774) 

Route Delays -0.0222 (0.0209) -0.0130 (0.0727) 0.0190 (0.0544) 

Total delays -0.0075 (0.0219) -0.0693 (0.1022) -0.0165 (0.0651) 

Sum (minutes of delay) 

Departure Delays -0.0502 (0.0867) 0.1470 (0.1740) 0.1429 (0.0889) 

Route Delays -0.0795 (0.0961) 0.1911* (0.1011) 0.0376 (0.0797) 

Total delays -0.0615 (0.0865) 0.2134* (0.1157) 0.1140 (0.0859) 

Variance, delays over 15 minutes 

Departure Delays -0.0816 (0.0552) -0.1004 (0.0695) -0.1497** (0.0628) 

Route Delays -0.0561 (0.0559) -0.0132 (0.0999) -0.0109 (0.0653) 

Total delays -0.0464 (0.0484) -0.0863 (0.0712) -0.1157** (0.0578) 

Notes: 

1. Each entry represents the coefficient on the log of airport HHI from the regression with a log of a given 

measure of delays as the dependent variable.  

2. Estimation methodology – airport fixed effects. See Section 3 of the paper for description of all control 

variables used. 

3. Standard errors, robust to autocorrelation and heteroscedasticity, are in parentheses. 

4. Conventional significance notation is used: * - 10%; ** - 5%. 
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Table 7 Effect of Airport Concentration on Delays, by Source of Delays 

 All primary airports Large hubs only Large and medium hubs 

Sum (minutes of delay by source) 

Carrier -0.0928 (0.0919) -0.0174 (0.1196) -0.0626 (0.0947) 

Late aircraft 0.0742 (0.1309) -0.0076 (0.1277) 0.0009 (0.1104) 

Weather 0.4534** (0.2110) -0.0029 (0.2714) 0.0626 (0.1596) 

NAS 0.1168 (0.0983) 0.2248* (0.1262) 0.1303 (0.1103) 

Security -0.1004 (0.2731) -0.7596 (0.6686) -0.6493 (0.4041) 

Carrier + Late aircraft 0.0099 (0.0658) 0.0096 (0.1004) -0.0195 (0.0934) 

Weather + NAS + Security -0.1531* (0.0813) -0.3257 (0.2605) -0.0242 (0.1723) 

Share by source 

Carrier -0.0262** (0.0132) -0.0314* (0.0165) -0.027** (0.0117) 

Late aircraft 0.0009 (0.0111) -0.0129 (0.0224) -0.0032 (0.0154) 

Weather 0.0122** (0.0058) --0.0039 (0.0149) 0.0030 (0.0089) 

NAS 0.0162* (0.0082) 0.0408 (0.0257) 0.0249 (0.0176) 

Security -0.0033 (0.0038) -0.0008 (0.0014) -0.0009 (0.0007) 

Carrier + Late aircraft -0.0204** (0.0079) -0.0451* (0.0234) -0.0319*(0.0163) 

Weather + NAS + Security 0.0389** (0.0147) 0.0507* (0.0297) 0.0382 (0.0235) 

Notes: 

1. Each entry represents the coefficient on the log of airport HHI from the regression with a logarithm of a given 

measure of delays as the dependent variable.  

2. Estimation methodology – airport fixed effects. See Section 3 of the paper for the list of control variables 

included into specifications. 

3. Standard errors, robust to autocorrelation and heteroscedasticity, are in parentheses. 

4. Conventional significance notation is used: * - 10%; ** - 5%. 
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Table 8 Price Effects of Delays 

 All primary airports Large hubs only Large and medium hubs 

Count of delays 

Departure Delays -0.3530* (0.1840) -0.4947* (0.2742) -0.2151* (0.1201) 

Route Delays -0.2677** (0.1269) -0.0621 (0.1335) -0.2845 (0.2262) 

Total delays -0.3098** (0.1480) -0.3519 (0.2192) -0.2191* (0.1308) 

Mean (minutes of delay) 

Departure Delays -1.0171 (0.8963) -0.5387 (0.3511) -0.1575 (0.2257) 

Route Delays -1.2441 (1.1188) -0.8576 (0.7955) -0.4298 (0.3121) 

Total delays -0.2948 (0.5315) -0.2948* (0.1678) -0.1675 (0.1393) 

Sum (minutes of delay) 

Departure Delays -0.3721* (0.1994) -0.2777* (0.1676) -0.1410 (0.0856) 

Route Delays -0.2212** (0.1011) -0.0755 (0.1140) -0.1607 (0.1420) 

Total delays -0.3330** (0.1664) -0.2093 (0.1286) -0.1243 (0.0835) 

Variance of delays 

Departure Delays -1.1176 (1.9665) -0.4504 (0.3068) -0.2113 (0.1382) 

Route Delays -0.5599 (0.4496) -1.1292 (3.1801) -0.3635 (0.2812) 

Total delays -0.0820 (0.2772) -0.7464 (0.5070) -0.2202 (0.1381) 

Notes: 

1. Each entry represents the coefficient on the log of the corresponding delay measure from the regression with 

the log of real average airport-level airfare as the dependent variable.  

2. Estimation methodology – two-stage least squares with airport fixed effects. Delays are instrumented with 

weather variables. See Section 3 of the paper for the list of control variables included into specifications. 

3. Standard errors, robust to autocorrelation and heteroscedasticity, are in parentheses. 

4. Conventional significance notation is used: * - 10%; ** - 5%. 

 

Table 9 Price Effects of Delays, by Source of Delays 

 All primary airports Large hubs only Large and medium hubs 

Sum (minutes of delay) 

Carrier -0.3577 (0.3752) -0.2243 (0.1680) -0.0585 (0.1337) 

Late aircraft -0.1668* (0.1011) -0.1981** (0.0993) -0.014 (0.0917) 

Weather -0.0908* (0.0488) -0.2046** (0.1005)  -0.0237 (0.0519) 

NAS -0.1436* (0.0755) -0.2479 (0.2942) 0.0170 (0.2390) 

Security -0.0951 (0.0729) 0.1755 (0.2636) -0.0895 (0.1734) 

Carrier + Late aircraft -0.2817 (0.1958) -0.2675* (0.1506) -0.0282 (0.0964) 

Weather + NAS + Security -0.1531* (0.0813)  -0.3257 (0.2605) -0.0242 (0.1723) 

Notes: 

1. Each entry represents the coefficient on the log of the corresponding delay measure from the regression with 

the logarithm of real average airport-level airfare as the dependent variable.  

2. Estimation methodology – two-stage least squares with airport fixed effects. Delays are instrumented with 

weather variables. See Section 3 for the description of all control variables used. 

3. Standard errors, robust to autocorrelation and heteroscedasticity, are in parentheses. 

4. Conventional significance notation is used: * - 10%; ** - 5%. 
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Table 10 Marginal Price Effects of Delays, in 1993 Dollars 

  All primary airports Large hubs only Large and medium hubs 

Increase number of flights delayed by 15+ min by 1 percent 

Departure delays -1.08* -1.33* -0.66* 

Route delays -0.82** -0.17 -0.87 

Total Delays -0.95** -0.94 -0.67* 

Increase mean delay by 1 minute, for 15+ min delays 

Departure delays -1.75 -1.01 -0.30 

Route delays -4.48 -2.90 -1.49 

Total Delays -0.55 -0.58* -0.33 

Increase every flight delay by 1 minute, for 15+ min delays 

Departure delays -2.11* -1.39* -0.71 

Route delays -2.25 0.66 -1.43 

Total Delays -1.97** -1.09 -0.65 

Increase variance of delays by 1 percent, for 15+ min delayed flights 

Departure delays -3.43 -1.21 -0.52 

Route delays -1.72 -3.03 -0.90 

Total Delays -0.25 -2.00 -0.55 

Notes: The numbers reported here are effects on average airfares, at the respective sample mean, based on 
estimates reported in Table 7. Boldface numbers are based on coefficients, significant at 10 percent level or lower. 


